If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(A)=-2A^2+200A
We move all terms to the left:
(A)-(-2A^2+200A)=0
We get rid of parentheses
2A^2-200A+A=0
We add all the numbers together, and all the variables
2A^2-199A=0
a = 2; b = -199; c = 0;
Δ = b2-4ac
Δ = -1992-4·2·0
Δ = 39601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{39601}=199$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-199)-199}{2*2}=\frac{0}{4} =0 $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-199)+199}{2*2}=\frac{398}{4} =99+1/2 $
| (3x-7)^(2)-4(3x-7)-12=0 | | 0.5(x+20)=2+3(x-3) | | 65+50+80=x | | 31/4x+1*2x=65 | | 6x-4(2x-4)=4(x-5) | | 64/x=32 | | 8b+2=3b=12 | | (4x-42)=-10x | | 6x-4(2x-4)=4(x-1) | | 4(5x-3)=20x-3 | | 43x+92=2(11x+4) | | 6(x-1)+107=x-7(x+1) | | 8(4+2)/x=8 | | -2+3(4x-3)=16 | | 39.13=8g+3.61 | | f(25)=4*25+1 | | x(x+12)=120 | | 34x=204 | | -42+n=-1 | | 62x=372 | | 45-n=2 | | 18-n=20/5 | | 7x-4=4+11x | | 2n=-9+22-n | | 18-n=20(1/5) | | -15-15h=11-2h | | 3x-15+5x+54=180 | | -2x+5(4x+1)=-13 | | -2-3-3r=-20-4r | | 3-15+5x+54=180 | | -3(w-8)=2w-1 | | 12.4q=11.5q-5.76 |